Comment on “Vacuum Rabi Splitting in a Semiconductor Circuit QED System”
نویسندگان
چکیده
منابع مشابه
Comment on "Vacuum Rabi splitting in a semiconductor circuit QED system".
In this Comment, we challenge the main claims made by Toida et al. [1] and demonstrate that their results do not provide direct evidence of vacuum Rabi splitting or vacuum Rabi oscillations. In contrast to statements made by Toida et al., the two sharp parallel structures in Fig. 3(b) of [1] are not indicative of a coherent quantum mechanical interaction. Instead, as shown in previous work [2,3...
متن کاملLarge vacuum Rabi splitting for a semiconductor nanogap cav - ity
Submitted for the MAR14 Meeting of The American Physical Society Large vacuum Rabi splitting for a semiconductor nanogap cavity MITSUHARU UEMOTO, HIROSHI AJIKI, Osaka University — A metallic nanogap utilizing surface plasmon excitation is one of the most popular designs of an optical antenna converting propagating radiation into enhanced fields at a nanoscale area (hotspot). Similarly, a nanoga...
متن کاملVacuum Rabi splitting for multilevel electromagnetically induced transparency system
We discuss the vacuum Rabi splitting (VRS) from multilevel atoms under electromagnetically induced transparency condition within the framework of linear absorption-dispersion theory. Sharp resonance features superimposed on usually occurring VRS doublet to three-peaked structure spectra are obtained here which can be engineered to have absorptive, dispersive, or dip like profiles according to t...
متن کاملLarge Vacuum Rabi Splitting in a Single Nitride-Based Quantum WellMicrocavity
Here, we report a theoretical detailed study of Vacuum Rabi Splitting (VRS) in the system of Nitride Single Quantum Well (SQW) within a semiconductor microcavity. Distributed Bragg Reflectors (DBRs) containing ZnTe/ZnSe multilayers including GaAs microcavity and ( SQW at the center of microcavity, has been considered. Upper and lower exciton-polariton branches obtaine...
متن کاملFeedback control of Rabi oscillations in circuit QED
We consider the feedback stabilization of Rabi oscillations in a superconducting qubit which is coupled to a microwave readout cavity. The signal is readout by homodyne detection of the in-phase quadrature amplitude of the weak-measurement output. By multiplying the time-delayed Rabi reference, one can extract the signal, with maximum signal-to-noise ratio, from the noise current. We further tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2013
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.111.249701